

Quantitative Productivity Measurements in an HPC Environment May 26, 2007

Jeremy Kepner, Bob Bond, Andy Funk, Andy McCabe, Julie Mullen, Albert Reuther

This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Outline

- LLGrid Environment
- Results
- Summary

- Background
- Notional Productivity
- Formal Productivity

Background

CTWatch C	UARTERLY	CTWatch QUARTERLY
ISSN 1555-9874	VOLUME 2 NUMBER 4A NOVEMBER 2006	ISSN 1555-9874 VOLUME 2 NUMBER 48 NOVEMBER 2006
HIGH PRODUCTIVIT and the PA USABLE PETAS	y Computing Systems Th Towards Cale Computing	HIGH PRODUCTIVITY COMPUTING SYSTEMS and the PATH TOWARDS USABLE PETASCALE COMPUTING
PART A: USER PROE	UCTIVITY CHALLENGES	PART B: SYSTEM PRODUCTIVITY TECHNOLOGIES Guest Editor Jeremy Kepner
INTRODUCTION 1 High Productivity Computing System the Path Towards Usable Petascale Co Jeremy Kepner	and mputing	1 A System-wide Productivity Figure of Merit Declan Murphy, Thomas Nash, Lawrence Votta, Jr., and Jeremy Kepner David A, Bader, Kamesh Madduri, John R. Gilbert, Viral Sha Jeremy Kepner, Theresa Meuse, and Ashok Krishnamurthy
FEATURE ARTICLES		10 Defense Constants A. Frankler Trans 52 Stopp A.Constant America & Preferences
2 Making the Business Case for High Performance Computing: A Benefit-Cost Analysis Methodology Albert Reuther and Suzy Tichenor	33 Observations About Software Development for High End Computing Jeffrey Carver, Lorin Hochstein, Richard Kendall, Taiga Nakamura, Marvin Zelkowitz, Victor Basili, and Douglass Post	Metric to Characterize the Transparency and Complexity of Performance Erich Strohmaier Performance Performance Sensitivity Analysi Pedro C. Diniz and Jeremy Abramson
9 What's Working in HPC: Investigating HPC User Behavior and Productivity Nicole Wolter, Michael O. McCracken, Allan Snavely, Hochstein, Taiga Nakamura, and Victor Basili	39 Application Software for High Performance Computers: A Soft Spot for U.S. Business Competitiveness Suzy Tichenor	19 Modelling Programmer Workflows with Timed 46 Metrics for Ranking the Performance of Markov Models Andrew Funk, John R. Gilbert, David Mizell, and Viral Shah Tzu-Yi Chen, Meghan Gunn, Beth Simon, Laura Carrington and Alian Snavely
18 Design and Implementation of the HPC Challenge Benchmark Suite Piotr Luszczek, Jack J. Dongarra, and Jeremy Kepner	46 Analysis of Parallel Software Development Using the Relative Development Time Productivity Metric Andrew Funk, Victor Basili, Lorin Hochstein, and Jeremy Kepner	 A Compiler-guided Instrumentation for Application Behavior Understanding Pedro C. Diniz and Tejus Krishna B Large-Scale Computational Scientific and Engineering Project Development and Production Workflows D. E. Post and R. P. Kendall
24 Experiments to Understand HPC Time to Development Lorin Hochstein, Taiga Nakamura, Victor R. Basili, Sim Asgari, Marvin V. Zelkowitz, Jeffrey K. Hollingsworth, Forrest Shull, Jeffrey Carver, Martin Voelp, Nico Zazw and Philip Johnson	52 Software Productivity Research In High Performance Computing Susan Squires, Michael L. Van De Vanter, and Lawrence G. Votta	35 Symbolic Performance Modeling of HPCS Applications Sadaf R. Alam, Nikhil Bhatia, and Jeffrey S. Vetter

"The productivity of HPC users intrinsically deals with some of the brightest people on the planet, solving very complex problems, using the most complex computers in the world. Anyone who truly wants to get insight into such a complex situation must be prepared to invest some time in the endeavo

MIT Lincoln Laboratory

Slide-3 LLGrid

Evolution of Supercomputing

LLGrid

- Not sure what it is but know we want it to be better
- "Big Tent" Philosophy
 - Lots of good things to do, pursue them all?
- Focus on:
 - Real (not peak) performance of critical national security applications
 - Programmability: reduce cost and time of developing applications
 - Software portability and system robustness

• Productivity is a *very* well defined concept in economics

Productivity = Utility/Cost

• In an HPC Context

- $$\begin{split} \psi &= \text{ productivity [utility/$]} & C_{\text{s}} &= \text{ software cost [$]} \\ U &= \text{ utility [user specified]} & C_{\text{o}} &= \text{ operation cost [$]} \\ T &= \text{ time to solution [time]} & C_{\text{M}} &= \text{ machine cost [$]} \\ C &= \text{ total cost [$]} \end{split}$$
- Software costs include time spent by users making codes parallel
- Operating costs include admin time, electric and building costs
- Utility is the <u>stakeholder specific</u> benefit of getting a result
 - Decision Makers
 - Project Managers
 - Users
 - Administrators

- Service Engineers
- Operators
- Vendors/Designers
- Technology Researchers

Outline

• Introduction

- User Impact
- Summary

- Lincoln Mission
- User Requirements
- ROI Model
- LLGrid Implementation

Lincoln Mission: Rapid Algorithm Development for National Security

 HPC can significantly accelerate the interactive development and testing of algorithms critical to National Security

MIT Lincoln Laboratory

User Requirements Survey

- Conducted survey (03-Nov-03) of Lab staff
 - Do you run long MATLAB jobs?
 - How long do those jobs run (minutes, hours, or days)?
 - Are these jobs unclassified, classified, or both?
- Survey results:
 - 464 respondents
 - 177 answered "Yes" to question on whether they run long jobs
- Lincoln MATLAB users:
 - Engineers and scientists, generally not computer scientists
 - Little experience with batch queues, clusters, or mainframes
 - Solution must be easy to use

<u>Goal</u>: To make enterprise wide access to high throughput Grid computing and distributed storage as easy as running on the desktop

LLGrid Hardware Growth

- Goal: increase hardware while keep staff costs constant
- Approach: built team first, hardware second
- Growing 3X every year for 4 years.
- Current capability is
 - LLGrid ~1500 CPUs ~750 nodes ~40 racks
 - Satellites ~18 x 2 racks ~40 racks
 - Total ~80 racks

TX-2500: Hardware/Facility Co-Design

432 DCLL PowerEdge 2850

Dual 3.2 GHz EM64-T Xeon (P4) 8 GB RAM memory Two Gig-E Intel interfaces Infiniband interface Six 300-GB disk drives

- 432+5 Nodes
- 864+10 CPUs
- 3.4 TB RAM
- 0.78 PB of Disk
- 28 Racks

Effectiveness Testing: HPC Challenge

Exploit Benefits of High Level Language + PGAS

Technology	UPC	F2008	GA++	PVL	VSIPL	PVTOL	Titanium	StarP	pMatlab	DCT	Chapel	X10	Fortress
Organization	Std	Std	DOE	Lincoln	Std Body	Lincoln	UC	ISC	Lincoln	Math-	Cray	IBM	Sun
	Body	Body	PNNL				Berkeley			works			
Sponsor	DoD	DOE	DOE	Navy	DoD		DOE,	DoD	DARPA		DARPA	DARPA	DARPA
		SC			HPCMP		NSF						
Туре	Lang	Lang	Library	Library	Library	Library	New	Library	Library	Library	New	New	New
	Ext	Ext					Lang				Lang	Lang	Lang
Base Lang	С	Fortran	C++	C++	C++	C++	Java	Matla b	Matla b	Matlat	ZPL	Java	HPF
Precursors		CAF		STAPL,	PVL,	VSIPL++,		pMatla b	PVL,	pMatla <mark>b</mark> ,			
				POOMA	POOMA	pMatla b			StarP	StarP			
Real Apps	2001	2001	1998	2000	2004	~2007		2002	2003	2005			
Data Parallel	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Block-cyclic	1D		ND blk	2D	2D	Y	ND	2D	4D	1D	ND	ND	
Atomic			Y									Y	Y
Threads	Y		Y								Y	Y	Y
Task Parallel			Y	Y	Y	Y	Y		Y		Y	Y	
Pipelines			Y	Y		Y			Y				
Hier. arrays						Y	Y		Y		Y	Y	Y
Automap				Y		Y			Y				
Sparse							?	Y	Y	Y	Y	?	?
FPGA IO					Y	Y							

- PGAS + high level environments is a "no brainer"; widely implemented; enables complex programs; makes simple programs trivial (even on clusters); community has settled on a common set of features
 - Data parallelism, block cyclic data distributions, atomic sections, threads, task parallelism, pipeline constructs, hierarchical arrays, and sparse arrays

pMatlab HPC Challenge on LLGrid

 Tested pMatlab against HPC Challenge benchmarks to verify performance and properly manage user expectations

- Introduction
- LLGrid Environment
- Results

- - User Response
 - Usage Statistics
 - ROI Calculation

Summary

User Time to Parallelize

Project	Serial Code Dev Time	Time to Parallelize		
1	2000 hours	8 hours		
2	1300 hours	1 hour		
3	40 hours	0.4 hours		
4	900 hours	0.75 hours		
5	40 hours	1 hour		
6	700 hours	8 hours		
7	600 hours	3 hours		
8	650 hours	40 hours		
0	960 hours	6 hours		

Results from LLGrid Feedback Interviews

Number of Projects on LLGrid

- Used meeting as a chance to probe any problems or issues users might have encountered
- 54 of 70 active unclassified users responded (~81%)
- 13 have not used LLGrid 100% of these have not used it because of changes in their project or project goals
- Results are from 46 users across the Laboratory

Languages Used on LLGrid

Cumulative Statistics per Month

December-03 to March-07

Slide-22 LLGrid

LLgrid Usage December 2003 – March 2007

Processors used by Job

Slide-23 LLGrid >8 CPU hours - Infeasible on Desktop >8 CPUs - Requires On-Demand Parallel Computing **MIT Lincoln Laboratory**

Production LLgrid model comparisons

Parameters	Past 3.1 Years	Past Year	Next Year	
Lab-wide Users	201	201	251	
New Users in Latest Year	81	81	50	
Active Users in Latest Year	146 146		175	
Simultaneous Jobs	10 16		25	
Avg. CPUs per Job	16	32	64	
Total Job Launches	137,588	95,525	125,000	
Number of System Administrators	4	4	4	
Nodes in System	592	592	852	
New Nodes in System (Latest Year)	442	442	280	
Benefit/Cost (Linear: CPUs)	24.10	43.05	144.62	
Benefit/Cost (Logarithmic: log ₂ (CPUs))	4.17	4.66	9.40	

MIT Lincoln Laboratory

Summary

	Total <u>CPUs</u>	Interactive <u>CPUs</u>	RAM	Virtual <u>Memory</u>
LLGrid	1500	1500	6 TB	1 PB
Top500 Rank	~75	~1	~75	~1

- LLGrid would be ~75 on worldwide Top500 rank
- LLGrid is the worlds largest interactive system
- LLGrid is the worlds largest parallel Matlab system
- LLGrid is the worlds largest virtual memory system
- Lincoln has a higher fraction of its workforce using parallel computing than any organization in the world
 - 20% of staff have accounts (<5% is typical across the country)
 - Active accounts are 60% of total (~10% is typical)
- By taking a ROI focused approach Lincoln has quickly developed a leadership capability in its area